倍数教案6篇

时间:
lcbkmm
分享
下载本文

为了让我们更好的开展自己的教学工作,一定要提前写好教案,作为一名优秀的老师,写教案是不可避免的事情,以下是莘莘范文网小编精心为您推荐的倍数教案6篇,供大家参考。

倍数教案6篇

倍数教案篇1

学习内容:

人教版小学数学五年级下册第21页第8题、第22页。

学习目标:

1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。

2.我能运用2、5、3的倍数的特征解决问题。

学习重点:

熟练掌握2、5、3的倍数的特征。

学习难点:

运用2、5、3的倍数的特征解决综合问题。

教学过程:

一、导入新课

二、检查独学

1.互动分享独学部分的完成情况。

2.质疑探讨。

三、合作探究

1.小组合作,完成课本第21页第8题。

(1)3个3的倍数的偶数________________

(2)3个5的倍数的奇数________________

讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?

2.自主完成第22页第10题,然后与同伴交流。

3.小组合作,完成第11题,然后组内代表汇报。

4.小组交流“生活中的数学”。

倍数教案篇2

教学内容:

苏教版义务教育教科书《数学》五年级下册第30~32页例1、例2和试一试、例3和试一试练一练,第35页练习五第1~4题。

教学目标:

1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

教学重点:

认识因数和倍数。

教学难点:

求一个数的因数、倍数的方法。

教学准备:

小黑板、准备12个同样大的正方形学具。

教学过程:

一、操作引入,认识意义

1.操作交流。

引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。

交流:你有哪些拼法?请你说一说,并交流你表示的算式。

结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

2.认识意义。

(1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。

(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

(3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是o的自然数。

倍数教案篇3

教学目标:

1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。

2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。

3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。

教学重点:

掌握倍数和因数等相关概念,以及应用概念判断、推理。

教学难点:

理解相关概念的联系和区别。

教学过程:

一、揭示课题

1.回顾知识。

提问:上节课,我们已经复习了整数和小数的有关知识。

在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?

结合学生交流,板书。

2.揭示课题。

引入:这节课,我们复习因数和倍数的相关知识。

通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

二、基本练习

1.知识梳理。

提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?

学生回顾,交流,教师适当引导回顾。

提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?

根据学生回答,板书整理。

2.做练习与实践第10题。

学生独立完成,指名板演。

集体交流,让学生说说找一个数的因数和倍数的方法。

3.做练习与实践第11题。

出示题目,学生直接口答。

提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

4.做练习与实践第12题。

学生先独立写出质数和合数,再指名口答。

追问:最小质数是几?最小的合数呢?

倍数教案篇4

教学目标:

1.结合整数乘、除法运算初步认识倍数和因数的含义;

2.自主探索求一个数的倍数或因数的方法;

3.在认识倍数和因数以及探索一个数的倍数或因数的过程中,感知因数和倍数的依存关系,进一步体会数学知识之间的内在联系。

教学重点:

理解因数和倍数的含义。

教学难点:

自主探索并初步总结找一个数的倍数和因数的方法。

教学过程:

一、课前谈话

二、新课引入

1.师:同学们的桌上都放着12个同样大的正方形,请你每次用这12个正方形拼成一个长方形,注意你不同的摆法?(每排摆几个?摆了几排?)看谁的方法多?速度快?会用算式表示你的摆法吗?

学生交流几种不同的摆法。随着学生交流屏幕上一一演示。2.进行交流:

如:每排摆了几个,摆了几排?你会用算式表示吗?

师:12个同样大小的正方形能摆3种不同的的长方形,可以用乘法算式或除法算式来表示,千万别小看这些算式,今天我们研究的内容就在这里。我们以第一道乘法算式为例。(屏幕出示)

43=12,

师:在这个算式中,你认为4、3、12有什么关系呢?

我们一起来读一读:

因为:43=12,

所以:12是4的倍数,12也是3的倍数,

4是12的因数,3也是12的因数,

读读看,能读懂吗?

继续出示:因为:62=12 ,所以

因为:121=12 ,所以

谁也来出个乘法算式说一说。

三、探索研究

1.师:我们刚才初步认识了因数和倍数,下面要进一步来研究因数和倍数。(出示课题:因数 倍数)

屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

4、5、18、20、36

师:老师在听的时候发现4、18都是36的因数,你也发现了吗?

师:4、18、都是36的因数。

师:36的因数只有这2个吗?

师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数全部找出来(既不重复又不遗漏)?请你选择你喜欢的方式,可以同桌合作,也可以独立完成,找出36的所有因数。如果能把怎么找到的方法写在纸上更好。

学生填写时师巡视搜集作业。

2.交流作业。

板书:36的因数:1、2、3、4、6、9、12、18、36。

师:通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?试一个。

3.师:找一个数的因数掌握的不错,会找一个数的倍数吗?

3的倍数:(找不完怎么办?) 有小巧门吗?

4.判断:(下面的说法是不是正确?)

⑴ 12是4的倍数,12也是6的倍数。

⑵ 8是16的因数,8又是4的倍数。

⑶ 1没有因数。

⑷ 5是倍数。

小结:倍数或因数都是指两个数之间的关系,不能单独说

我们在研究倍数和因数时,所说的数一般指不是0的自然数。

板书完整: 不是0的自然数

四、实践应用

师:因数和倍数的知识在实际生活中有很多运用。

五、课堂小结。

刚才我们一起研究、认识了倍数和因数,你学得怎样?

倍数教案篇5

1、像0、1、2、3、4、5、6……这样的数是自然数。

2、像-3、-2、-1、0、1、2、3……这样的数是整数。

3、※一个数只有1和它本身两个因数,这个数叫质数。

※一个数除了1和它本身以外还有别的因数,这个数叫合数。

※1既不是质数,也不是合数。

20以内的质数和合数:

质数:2、3、5、7、11、13、17、19

合数:4,6,8,10,12,14,15,16,18,20

1既不是质数也不是合数。

4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。

5、找倍数:从1倍开始有序的找。

6、一个数倍数的特点: ①一个数的倍数的个数是无限的;

②最小的倍数是它本身; ③没有最大的倍数。

7、找因数:找一个数的因数,一对一对有序的找较好。

8、一个数因数的特点: ①一个数的因数的个数是有限的;

②最小的因数是1;③最大的因数是它本身。

9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。

10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数

11、5的倍数的特征:个位是0或5的数是5的倍数。

12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。

13、既是2的倍数又是5的倍数的特征:个位是0的数。

既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;②各个数位上的数字的和是3的倍数

既是3的倍数又是5的倍数的特征:①个位是0或5的数;

②各个数位上的数字的和是3的倍数

既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数; ②各个数位上的数字的和是3的倍数

9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数。

14、按一个数的因数个数分,自然数可以分为三类:质数、合数和1。

第二单元  图形的面积(一)

1、         长方形周长=(长+宽)×2               c = 2 ( a + b )

2、        长方形面积=长×宽                        s = a b

3、         正方形周长=边长×4                       c = 4 a

4、         正方形面积=边长×边长                    s = a 2

5、         平行四边形面积=底×高                    s = a h

6、         平行四边形底=面积÷高                    a = s ÷ h

7、         平行四边形高=面积÷底                    h = s ÷ a

8、         三角形面积=底×高÷2            s = a h ÷ 2

9、         三角形底=面积×2÷高           a = 2 s ÷ h

10、      三角形高=面积×2÷底           h = 2 s ÷ a

11、    梯形面积=(上底+下底)×高÷2    s = ( a + b ) h ÷ 2

12、   梯形高=梯形面积×2÷(上底+下底)  h = 2 s ÷( a + b )

13、      梯形上底=梯形面积×2÷高-下底  a = 2 s ÷ h - b

14、      梯形下底=梯形面积×2÷高-上底  b = 2 s ÷ h - a

15、      1平方千米=100公顷=1000000平方米

16、      1公顷=10000平方米

17、      1平方米=100平方分米=10000平方厘米

第三单元  分数

1、分数:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。

3、真分数:分子小于分母的分数叫做真分数。真分数小于1。

4、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

5、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

6、 几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。用短除法求最大公因数。

7、 互质:两个数的公因数只有1,这两个数叫做互质。

互质的规律:

(1)    相邻的自然数互质;

(2)    相邻的奇数都是互质数;

(3)    1和任何数互质;

(4)    两个不同的质数互质

(5)    2和任何奇数互质。

质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

8、  几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。用短除法求最小公倍数。

9、

关系 最大公因数 最小公倍数

倍数关系 较小数 较大数

互质关系 1 他们的乘积

一般关系 短除法 短除法

10、  分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。

11、   约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。

12、   通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。

13、      如何比较分数的大小:

分母相同时,分子大的分数大;

分子相同时,分母小的分数大;

分子分母都不同时,通分再比。

14、  分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。

15、   的意义:①把单位“1”平均分成4份,表示这样的3份。②把3平均分成4份,表示这样的1份。

数学与交通:

1、    相遇问题:

基本公式:一个人走:速度×时间=路程

两个人同时相对而行:速度和×相遇时间=两人共走路程

甲走的路程+乙走的路程=两人共走的路程

2、       旅游费用:

①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选择一种方案购票或几种方案结合起来购票。若只有a、b两种方案是,只要选择其中一种价格便宜的就行。

②租车问题: 两个原则:一是尽量多的使用更便宜的车;

二是空位越少越好。

3、  看图找关系:

①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。

②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行驶;线往下画,说明减速。

③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明原地不动;线往下画,说明又从终点回到某地。

第四单元  分数加减法

1、异分母分数加减法方法:先通分,化成同分母分数,再按照同分母分数加减法的方法进行计算。

2、分数加减法对计算结果的要求:能约分的要约分,一定要约成最简分数。

3、分数化成小数的方法:用分子除以分母,除不尽的,按题目要求保留一定位数的小数,没有要求时,一般保留三位小数。

4、小数化成分数的方法:看小数部分有几位,就在1后面加几个零做分母,去掉小数点做分子,能约分的要约分。

第五单元  图形的面积(二)

1、求组合图形面积的方法:

① 分割法:根据图形和所给的条件,将图形进行合理的分割,形成基本图形,基本图形面积的和就是组合图形面积。

② 添补法:将图形所缺部分进行添补,组成几个基本图形。基本图形面积-添补的图形面积=组合图形面积。

2、不规则图形面积的估计与计算:

①数格子的方法;

②根据不规则图形确定近似的基本图形,量出求基本图形的面积是所需要的条件算出面积。

鸡兔同笼:

方法:①列表法:一般采用取中间数列表的方法;

②画图法;

③假设法;

④列方程:根据关系式:“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解答。

点阵中的规律:

1、数与数之间的变化规律:根据已知数前后或上下之间的关系,找到其中的规律,得出相应的数。

2、图形与图形之间的变化规律:观察图形的变化,可以从图形的形状、数量、大小等方面入手,从中找到规律,推导出后面的图形。

第六单元  可能性大小

1、确定事件的表示方法:用1表示事件一定发生,用0表示事件一定不会发生。

2、可能出现的事件的表示方法:用分数表示可能性的大小,首先明确事件可能出现的所有情况作分母,其次把可能出现的结果做分子。

3、设计活动方案:充分认识用来表示可能性的分数的含意,即:事件可能出现的所有情况作分母,把可能出现的结果做分子。

铺地砖:

1、长方形的面积=长×宽,  正方形的面积=边长×边长

2、面积单位之间的关系:1平方米=100平方分米=10000平方厘米

1平方分米=100平方厘米

3、求地面铺地砖总块数的方法:

①用房间面积÷每块地砖的面积=所铺地砖的块数

②用每平方米所需的块数×房间总面积=所铺地砖的块数

③看长里有多少个地砖的边长,宽里有多少个地砖的边长,再用长里所需的块数乘以宽里所需的块数,

④用方程解

⑤所注意的问题:最后的结果不是整块数时,一定要用进一法却近似值,求出的钱数最后结果要自觉保留两位小数。

倍数教案篇6

“菲”同寻常

教学内容

苏教版九年义务教育小学数学第十册第39-40页,练一练,练习七第1-4题。

教学目标

1、使学生认识整除的意义,认识约数和倍数,能判断一个除法算式是不是整除的算式,并能说出两个数是否存在约数和倍数关系。

2、培养学生观察、比较、综合、概括等思维能力,培养学生依据概念进行判断的能力。

教学重难点

1、能判断一个除法算式是不是整除的算式,并能说出两个数是否存在约数和倍数关系。

2、区别除尽和整除,倍和倍数概念间的异同,倍数和约数相互依存关系。

教具准备

口算卡、小黑板

教学过程

一、随机口算

15÷3=   10÷3=  1.5÷3=    28÷7=    20÷7=

28÷0.7= 33÷11= 35÷11=   3.3÷1.1=

二、建构概念

1、认识整除

(1)、根据商的特点,你能将这9道算式分分类吗?

除尽(没有余数)  除不尽(有余数)

(2)、除尽的这类算式还能再分一分吗?

除尽

整除 不能整除

师指出:像被除数、除数和商都是整数且没有余数时,就是一个整除算式。

(3)、你能再举出一些整除的算式吗?师相机板书

(4)、设疑:太多了,说不完!谁有办法把大家的整除算式概括成一个整除算式?

(5)、启发:请字母来帮忙啊,被除数用a,除数用b,商用c,怎么表示?

师板书:a÷b=c

追问:这个整除算式中,a,b,c各有什么特点?(都要是整数,没有余数,b≠0)

(6)、指出:当a、b、c都是整数且没有余数时,就是一个整除的算式。由此便可以说:

a能被b整除,b能整除a

(7)、学会叙述:例如15÷3中,哪个数能被哪个数整除?还可以怎么说?

选一道算式,像这样说给同桌听。

(8)、判断练习p40练一练

2、认识约数和倍数

(1)、师指出:当数a能被数b整除时,a就叫做b的倍数,b就叫做a的约数。(板书课题)

(2)、例如“因为15能被3整除,3能整除15,所以,15是3的倍数,3是15的约数”这句话你会说吗?

请同学们选一个整除算式,也可以自己写两个数,同桌互相说一说。

(3)、判断

①因为1.5÷0.5=3,所以1.5是0.5的倍数。(  )

②因为9÷6=1.5,所以9是6的1.5倍。(  )

③因为36÷6=6,所以36是倍数,6是约数。(  )

④5是5的约数,5又是5的倍数。(  )

(4)、填空,使它成为整除算式。

(  )÷1=(  )      0÷(  )=(  )

师:能填的完吗?填不完是因为怎样的数都可以?

任何整数       任何非零整数

师:因此,我们可以说,任何整数都是1的倍数,1是任何整数的约数。0是任何非零整数的倍数,任何非零整数也都是0的约数。为了方便,我们在研究约数和倍数时,所说的数一般指不是零的自然数。

三、巩固练习

p431-4 机动

四、小结应用

1、学了这节课,你有什么收获?

2、应用这些知识,你能从下面这组数中,任选2个数字说句话吗?

45   30    5   3   2

倍数教案6篇相关文章:

幼儿园手工船教案通用6篇

小班下学期教案优秀6篇

丢沙包中班教案6篇

幼儿园中班卫生教案6篇

幼儿主题教案推荐6篇

美术花花衣教案6篇

小小班语言教案最新6篇

幼儿园劳动活动教案6篇

幼儿园小班音乐课程教案6篇

安全与健康教案推荐6篇

倍数教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
98347