因数倍数教案8篇

时间:
couple
分享
下载本文

生动的教案能够激发学生的学习兴趣,制定教案可以帮助教师更好地掌握教学进度和教学质量,莘莘范文网小编今天就为您带来了因数倍数教案8篇,相信一定会对你有所帮助。

因数倍数教案8篇

因数倍数教案篇1

教学内容:

义务教育课程标准小学数学五年级下册第二章《因数和倍数》第1节例1(教材第13页)及练习二的第2题,第四题的前部分。

教材分析:

本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。

教学目标:

1、应用尝试教学法鼓励学生自主尝试探究求一个数的因数的方法及规律特点,并能熟练找全一个数的因数;

2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。

教学重点:

探究求一个数的因数的方法及规律特点。

教学难点:

用求一个数的因数的方法熟练找全一个数的因数。

教具准备:

投影仪、小黑板、卡片

教学课时:一课时

教学设想:

运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。

教学过程:

一、复习旧知

师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?

生:(预设)可以!

师:出示小黑板。

1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。

21和7 2×7=14 30÷6=5

2、判断。

(1)12是倍数,2是因数。 ( )

(2)1是14的因数,14是1的倍数。 ( )

(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。( )

教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……

二、新课教学

过程一:尝试训练。

(一)出示问题

师:同学们,老师有一个新问题,想请大家帮助解决,行吗?

生:行!(预设)

尝试题:14的因数有哪几个?

(二)学生解决问题,教师巡视并根据实际适时辅导学困生。

(三)信息反馈。

板书:

1×14

14 2×7

14÷2

14的因数有:1,2,7,14

过程二:自学课本(p13例1)。

(一)学生自学例1。

教师提出自学要求(投影):

1、18有哪些因数?

2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。

3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。

(二)信息反馈

1、反馈自学要求情况;

板书:

1×18

18 2×9

3×6

18的因数有1,2,3,6,9,18。

还可以这样表示: 18的因数

2、知识对比,探索发现规律。

(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:

投影出示问题:

思考一:你用什么方法找出?

(2)学生思考,教师适时引导。

(3)同桌交流思考结果。

(4)师生互动。总结方法、点出课题。

求一个数的因数的方法:用乘法计算或除法计算(整除)

过程三:尝试练习

(一)用小黑板出示练习题

1、找出30的因数有哪些?36的因数有哪些?

2、结合14、18、30、36的因数个数,请你谈谈一个数的因数有什么特点?〖提示:一个数的最小因数是( ),的因数是( )。〗

(二)信息反馈:师生互动总结特点。

板书:

一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。

三、课堂作业

练习二第2题和第4题前半部分。

四、课堂延伸

猜一猜:(卡片)只有一个因数的数是谁?

五、课堂小结

师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?

生:……

板书设计:

求一个数的因数的方法

1×14

14 2×7 方法:用乘法计算或除法计算(整除)

14÷2

14的因数有:1,2,7,14

1×18

18 2×9

3×6

18的因数有:1,2,3,6,9,18 特点:一个数的因数的个数是有限的。

还可以表示为:

它的最小因数是1的因数是它本身。

因数倍数教案篇2

教学目标:

1、通过操作活动得出相应的乘除法算式,协助同学理解倍数和因数的意义;探索求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

2、在探索一个数的倍数和因数的过程中培养同学观察、分析、概括能力,培养有序考虑能力。

3、通过倍数和因数之间的互相依存关系使同学感受数学知识的内在联系,体会到数学内容的奇妙、有趣。

教学重点:理解倍数和因数的意义。

教学难点:探索求一个数的倍数和因数的方法。

教学准备:每桌准各12个一样大小的正方形,每人准备一张自身学号的卡片。

设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发同学持续的学习兴趣;同学通过独立考虑、合作文流进行自主探索;教师引导同学掌握数学考虑的方法。

教学过程:

一、智力竞猜 引入新课

1、让同学进行“智力竞猜”——春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(局部同学能猜出三个人分别是孙子、爸爸、和爷爷)

2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请同学以韩有才为中心介绍—下三个人的关系。同学可能会说出“韩有才.是爸爸”,“韩有才是儿子”的语句,这时引导同学说出“谁是谁的爸爸”“谁是准的儿子”。

3、上述“父子关系”是一种互相依存的关系,在表述时一定要完整。并向同学说明自然数中某两个数之间也有这种类似的依存关系——倍数和因数。

设计说明:“智力竞猜”走同学喜欢的形式,因为每个同学都有争强好胜之心,“竞猜”有两个作用,一是激发同学的学习兴趣,二是以此引出“相互依存”的关系,为理解倍数和因数的相互依存关系作铺垫。

二、操作发现 理解概念

1、师:“‘智慧从手指问流出’,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并考虑一下其中蕴涵着哪些不同的乘除法算式。”

2、请同学汇报不同的摆法,以和相应的.乘除法算式。(乘法算式和除法算式分开写)再向同学说明:假如一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让同学特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)

设计说明;让同学写出蕴涵的乘除法算式符合同学的知识基础,同学有的可能用乘法表示,也有的可能用除法表示;让同学将旋转后相同的去掉,这是一次简化,很多同学并不知道,需要指导,这样可以使同学认识到事物的实质。

3、让同学一起看乘法算式4×3=12,向同学指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。

4、先请一个同学站起来说一说.然后同桌的同学再互相说一说。

5、让同学仿照说出6×2=12和12×1=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。

6、同学相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。同学可能会出现0×( )=0的情况,借此向同学说明我们研究因敷和倍数一般指不是0的自然数。

设计说明:倍数和因数是全新的概念,需要教师的“传授、讲解”,需要同学的适当“记忆”——重复、仿照。当然,要使同学真正理解还必需举一反三,通过互相举例可以逐步完善同学对倍数和因数的认识,同时使同学明确倍数和因数的研究范围。

7、以4×3=12与12÷3=4为例,向同学说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让同学试一试其他几个除法算式中的关系。

8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数

5×4=20 35÷7=5 3+4=7

(1)同学回答后引发同学考虑:能不能说20是倍数,4是因数。使同学进一步理解倍数是两个数之间的一种相互依存的关系,必需说哪个是哪个的倍数,因数也同样如此。

(2)通过3+4=7使同学进一步理解倍数和因数都是建立在乘法或除法的基础之上的。

设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。

三、探索方法 发现特征

1、找一个数的因数。

(1)联系板书的乘除法算式观察考虑12的因数有哪些,井想方法找出15的所有因数。

(2)同学独立考虑,明白根据一个乘法(除法)算式可以找出15的两个因数,在同学充沛交流的基础上引导同学有条理的“一对一对”说出15的因数。

(3)用“一对一对”的方法找出36的所有因数。可能有的同学根据乘法算式找的,也有的同学是根据除法算式找的,都应该给予肯定。

(4)引导同学观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它自身。

设计说明:先布置同学“找一个数的因数”可以使同学利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。同学交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导同学“一对一对”的找是必要的,它可以培养同学的有序考虑。最后引导同学观察。使同学自主发现、归纳出一个数的因数的某些特征。

2、找一个数的倍数。

(1)让同学找3的倍数,比一比谁找得多。

(2)同学汇报后,引导同学有序考虑,并得出3的倍数可以用3乘连续的自然数1、2、3……,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。

(3)找出2的倍数和5的倍数,并引导同学观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它自身,没有最大的倍数。

设计说明:让同学比一比谁找的倍数多,可以使同学发生认知抵触,认识到一个数的倍数个数是无限的,在同学汇报后同样需要引导同学的有序考虑,需要引导同学自主发现、归纳一个数倍数的特征。

四、巩固练习

师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自身掌握得如何?

1、“想想做做”的第l题。同学表述后强调哪个是哪个的倍数(或因数)。

2、“想想做做”的第2题。同学填好后引导同学说一说:表中的“应付元数”其实都是什么?表格中为什么用省略号?

3、“想想做做”的第3题。同学填好后引导同学说一说:表格中所有数都是什么?这个表格中为什么没有省略号?

4、游戏——“找朋友”。让同学拿出各自的学号卡片,找出自身学号数的所有因数,使同学发现每个学号数的因数都在全班的学号数以内;再让同学找一找自身学号数的倍数,井说一说能不能在全班学号数内部找到一个,还有其他的吗?

设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使同学感悟到其中蕴藏着求一个数倍数和因数的方法,以和倍数和因数的某些特征。第4题通过游戏活动进一步激发同学持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。

五、自我梳理 探索延伸

1、通过这节课的学习你有什么收获?向你的同伴介绍一下。

2、生活中许多现象与我们学习的“倍数和因数”的知识有关,课后同学们可以利用今天所学的知识探索一下“1小时等于60分”的好处。通过探索使同学明白由于60的因数是两位数中最多的,可以方便计算。

设计说明:“向同伴介绍自身的收获”可以将课堂中学到的知识进行自我梳理,同时通过探索“1小时等于60分”的好处“,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展同学的知识面,使同学认识到数学知识的应用价值。

因数倍数教案篇3

教学内容:教科书第25页,练习四第5~8题。

教学目标:

1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。

2、通过练习,使学生建立合理的认识结构,形成解决问题的多样策略。

3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。

教学过程:

一、基本训练

1、我们已经掌握了找两个数的公倍数和最小公倍数的方法,这节课我们继续巩固这方面的知识,并能够利用这些知识解决一些实际问题。

(板书课题:公倍数和最小公倍数练习)

2、填空。

5的倍数有:( )

7的倍数有:( )

5和7的公倍数有:( )

5和7的最小公倍数是:( )

3、完成练习四第5题。

(1)理解题意,独立找出每组数的最小公倍数。

(2)汇报结果,集体评讲。

(3)观察第一组中两个数的最小公倍数,看看有什么发现?

每题中的两个数有什么特征呢?(倍数关系)可以得出什么结论?

(4)第二组中两个数的最小公倍数有什么特征?(是这两个数的乘积)

在有些情况下,两个数的最小公倍数是这两个数的乘积。

4、完成练习四第6题。

你能运用上一题的规律直接写出每题中两个数的最小公倍数吗?

交流,汇报。

说说你是怎么想的?

二、提高训练

1、完成练习四第7题。

(1)理解题意,独立完成填表。

(2)你是怎样找到这两路车第二次同时发车的时间的`?

你还有其他方法解决这个问题吗?(7和8的最小公倍数是56)

2、完成练习四第8题。

(1)理解题意。

(2)“每隔6天去一次”是指7月31日去过以后,下一次训练日期是8月6日。“每隔8天去一次”指的是什么呢?

你能说说,他们下次相遇,是在几月几日吗?(8月24日)

你是怎样知道的?

要知道他们下次相遇的日期,其实就是求什么?(6和8的最小公倍数)

三、课堂小结

通过练习,同学们又掌握了一些比较快的求两个数最小公倍数的方法,并能运用这些方法解决一些实际问题。

在小组中互相说说自己本节课的收获。

因数倍数教案篇4

教学内容:

人教版小学数学五年级下册第二单元第5第6页《因数与倍数》

教材分析:

整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。

学情分析:

因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。

教学目标:

1.学生掌握找一个数的因数,倍数的方法。

2.学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。

3.培养学生的观察能力。

教学重点:

掌握找一个数的因数和倍数的方法。

教学难点:

能熟练地找一个数的因数和倍数。

教学准备:

多媒体课件

教学过程:

一、自主探索

1、出示书上主题图,学生列出乘法算式

2×6=12,在这里,2和6是12的因数。12是2的倍数,也是6的倍数。(教师板书因数,倍数)

2、出示书中主题图,学生列出乘法算式。

3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?

学生口答,巩固因数和倍数的含义?

3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?

学生发表自己的见解。

总结:因数和倍数必须是成对出现,它们是相互依存的。不能说3是因数,12是倍数。

4、你还能找出12的其他因数吗?

学生独立完成,集体订正。

总结:为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数(不包括0)。

5.小结引出课题。

师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如,12÷2=6,12是2和6的.倍数,2和6是12的因数。(教师板书)

6.例题学习

出示例题:18的因数有哪几个?

学生独立试做,集体订正

(1)想谁和谁相乘是18?

18=1×1818=2×918=3×6

所以18的因数是1,2,3,6,9,18。

(2)列出被除数是18的除法算式

18÷1=1818÷2=918÷3=6

18÷6=318÷9=218÷18=1

分析:18最小的因数是哪一个?1还是哪些数的因数?18最大的因数是那一个

7.出示做一做:

30的因数有哪些?36呢?学生独立练习,并口述方法,

由此你发现了什么?一个数最小的因数是1,最大的因数是它本身,一个数的因数的个数是有限的。一个数的最小倍数是它本身,没有最大的倍数。

8.小结:用字母表示数的知识表述因数和倍数的关系

m÷n=pm、n、p都是非0的自然数,n和p是m的因数,m是n和p的倍数。

a×b=ca、b、c都是非0的自然数,a和b是c的因数,c是a和b的倍数。

二、巩固练习

1.(出示主题图)下面的四组中,谁是谁的因数?谁是谁的倍数?

4和2426和1375和2581和9

2.课本练习

三、总结反思:

由学生回忆本节课所学内容。

因数倍数教案篇5

【教学内容】

认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

【教学目标】

1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

【重点难点】

理解因数和倍数的含义。

【复习导入】

1. 教师用课件出示口算题。

10÷5= 16÷2=

12÷3= 100÷25=

220÷4= 18×4=

25×4= 24×3=

150×4= 20×86=

学生口算

2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

(板书课题:因数和倍数(1))

【新课讲授】

1.学习因数和倍数的概念

(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

谁来说一说其他的式子?

学生回答。

教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。

(3)通过刚才同学们的回答,你发现了什么?

学生回答,教师板书:倍数与因数是相互依存的。

2.举例概括

教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

教师同时板书。

教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

如:m÷n=p,m、n、p都是非0自然数,那么n和p是m的因数,m是n和p的倍数。

a×b=c,a、b、c、都是非0自然数,那么a和b是c的因数,c是a和b的倍数。

你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

3、9、15、21、36

学生独立思考并回答。

【课堂作业】

1.完成教材第5页“做一做”。

2.完成教材第7页练习二第1题。

3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

4.下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

【课堂小结】

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

【课后作业】

完成练习册中本课时练习。

因数和倍数(1)

在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

因数和倍数一般指的是自然数,而且其中不包括0。

倍数与因数是相互依存的。

本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。

因数和倍数(2)

【教学内容】

一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

【教学目标】

1.通过学习使学生掌握找一个数的因数,倍数的方法;

2.学生能了解一个数的因数是有限的,倍数是无限的;

3.能熟练地找一个数的因数和倍数;

4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

【重点难点】

掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

【复习导入】

说出下列各式中谁是谁的因数?谁是谁的倍数?

20÷4=5 6×3=18

在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

(板书课题:因数和倍数(2))

【新课讲授】

(一)找因数:

1.出示例1:18的因数有哪几个?

一个数的'因数还不止一个,我们一起找找18的因数有哪些?

学生尝试完成后汇报

(18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2.用这样的方法,请你再找一找36的因数有哪些?

小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36

教师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

教师板书:一个数的最小因数是1,最大因数是它本身。

3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1.我们一起找到了18的因数,那2的倍数你能找出来吗?

小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……

教师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?

2.让学生完成做一做1、2小题:找3和5的倍数。汇报

3的倍数有:3,6,9,12

教师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……)

5的倍数有:5,10,15,20,……

教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。

教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】

1.完成课本第7页练习二第2~5题。

2.完成教材第8页练习二第6~8题。

?课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

【课后作业】

完成练习册中本课时练习。

因数和倍数(2)

一个数的因数的个数是有限的,,最小的是1,最大的是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

因数倍数教案篇6

描述目标:

1、知识目标:①结合整数乘、除法运算初步认识因数和倍数的含义;

②探索求一个数的因数和倍数的方法;

③通过列举法,发现并概括出一个数的因数和一个数的倍数的特点;

④能找出一个数的因数、一个数的倍数。

2、能力目标:使同学在认识因数和倍数以和探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学考虑的水平。

3、情感目标:培养同学观察、分析、笼统概括能力,体会教学内容的有趣,发生对数学的好奇心。

教学重点:结合整数乘、除法运算体会和理解因数和倍数的含义,探索求一个数的因数数或倍数的方法。

教学难点:引导同学探索并理解因数数和倍数之间的相互依存的关系。

教学过程;

一、导入。

1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2.同学动手操作,并与同桌交流摆法。

3.请用乘法算式表达你的摆法。

二、理解新知。

1.理解因数和倍数。

(1)观察3×4=12

今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。

师板书:因数和倍数

(2)用因数和倍数说一说算式l×12=12,2×6=12中三个数的关系。

(3) 提问:在4+3=7中我们能说7是4和3的倍数,4和3都是7的因数吗?(同学讨论)

?设计意图:通过讲解、设疑、讨论等形式让同学从其内涵上加深对因数和倍数的理解,明确因数和倍数是相互依存的概念,不能独立存在。】

(4)归纳:

①因数和倍数都是表示两个数之间的关系,不能单独说那个数是因数,那个数是倍数。

②只有一个自然数是两个自然数的乘积时候才干谈上它们之间具有因数和倍数的关系。

③研究因数和倍数时,所指的数是整数(一般不包括o)。

(5) 讨论:板书:24÷4=6

提问:能说4、6是24的因数,24是4、6的倍数吗?

同学各说自身的理由,讨论后统一。

提示:4×6=24(教师板书),这样你看出来了吗?

(6)练习:

①21×3=63, 是 的因数, 是 的倍数;6是18的 ,是3的 。

②先判断下面的算式中的数有因数倍数的关系。假如有因数和倍数关系,请说一说谁是谁的因数,谁是谁的倍数。7+5=12 7×5=35 20-13=7 8÷4=2

?设计意图:提高对因数和倍数的意义的认识。】

2.求一个数的因数。

(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。

请同学们找出36的所有因数。

出示要求:

①可独立完成,也可同桌合作。

②可借助刚才找出12的所有因数的方法。

③写出36的所有因数。

④想一想,怎样找才干保证既不重复,又不遗漏。

(2)比较喜欢哪一种答案?为什么?

用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

(3)练习:

①对口令游戏。

②16的因数有哪些? 11的因数有哪些?

(4)发现因数特点:36、16、11的因数你有什么发现吗?

师:虽然个数不相等,但它们的个数都是有限的。

小结:一个数的最小因数是1,最大的因数是它自身。一个数的因数个数是有限的。(同学总结不出此点不要急于点拨)

(5)练习:说特点猜数。

3.求一个数的倍数。

(1)3的倍数有:——,怎样有序地找,有多少个?

(2)练一练:6的倍数有;5的倍数有。

(3)发现倍数特点:找得对吗?我们一起来说一说。下面请大家仔细观察,你发现一个数的倍数有什么特点?可以前后四人小组讨论讨论。(导:发现最小的特征后问:那么7最小的倍数是几?10呢?)一个数的倍数还有怎样的特点?这些数的倍数你写得完吗?也就是说明一个数的倍数的个数是无限的。那么也没有最大的倍数。刚才大家发现了——,简单地说就是——

小结:一个数的最小倍数是自身,没有最大的倍数,一个数的倍数的个数是无限的。(和一个数的因数特点进行对比)

?设计意图:这个环节的教学主要把小组讨论和自主探索结合起来,让同学在讨论中体会过程、总结方法、提升水平,发现有关倍数的一些规律。】

(4)练习:判断题

四、拓展应用。

1.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

2.举座位号起立游戏。

(1)5的倍数。

(2)48的因数。

(3)既是9的倍数,又是36的因数。

(4)怎样说一句话让还坐着的同学全部起立。

五、黄金二分钟。

达标检测:

1、理解因数和倍数:练习:

①21×3=63, 是 的因数, 是 的倍数;6是18的 ,是3的 。

②先判断下面的算式中的数有因数倍数的关系。假如有因数和倍数关系,请说一说谁是谁的因数,谁是谁的倍数。7+5=12 7×5=35 20-13=7 8÷4=2

?设计意图:提高对因数和倍数的意义的认识,达成知识目标中的第①个目标】

?评价规范:同学能正确理解和掌握因数和倍数的意义,尤其能通过算式找出一个数的因数和倍数】

2、会找一个数的因数:

①对口令游戏。

②16的因数有哪些? 11的因数有哪些?

③说特点猜数。

?设计意图:通过对口令提升同学找因数的方法的方法训练,达成知识目标中的第②③个目标】

?评价规范:同学能用正确的方法,快速、正确的找出一个数的所有因数】

3、会找一个数的倍数:我会辩。【设计意图:达成知识目标中的第④个目标】

?评价规范:同学能用正确的方法,快速、正确的找出一个数的倍数】

因数倍数教案篇7

课前考虑:

1.概念揭示变“逻辑演绎”为“活动建构”。因数和倍数,保守教材是按数学知识的逻辑系统(除法整除约数和倍数)来布置的,这种概念的揭示,从笼统到笼统,没有同学亲身经历的过程,也无须同学借助原有经验的自主建构,同学获得的概念是刻板、冰冷的。假如能借助同学的操作和想象活动,唤起同学的“因倍意识”,自主建构起“因数和倍数”的意义,那么同学获得的概念必定是生动的、有意义的。

2.解决问题变“关注结果”为“对话生成”。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉同学,迫切地寻求结果,还是给同学充沛的探究时间,让他们通过独立考虑、交流讨论,从而发现问题、解决问题呢?很多胜利的教学标明,在教学中为同学营造出一个“对话场”,在生生、师生多角度、多层面的对话中,能让师生相互分享经验、沟通考虑,生成新的'看法。

3.教学宗旨变“关注知识”为”启迪智慧”。“知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。”从知识课堂走向智慧课堂,为同学的智慧生长而教,应成为我们数学教学的倾心追求。怎样通过对“因数和倍数”内涵的深度挖掘,在教给同学数学知识的同时,更教会他们数学考虑的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计“因数和倍数”这堂课的宗旨所在。

教学目标:

1.通过“活动建构”,使同学领会因数和倍数的意义;通过独立考虑、交流谈论,初步掌握求一个数所有因数的方法。

2.在解决问题的过程中,培养同学思维的有序性、条理性,增强同学的探究意识和求索精神。

3.通过教学,让同学从中感受到数学考虑的魅力,体验到数学学习的乐趣。

教学准备:

练习纸、学号卡等。

教学重、难点:

掌握求一个数的所有因数的方法,学会有序地进行考虑。

因数倍数教案篇8

第一单元 倍数与因数

3的倍数的特征

第6课时

[教学内容] 数的奇偶性

[教学目标]

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学重、难点]

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学过程]

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

试一试:

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律

先研究“偶数+偶数”的规律,在经历“列式计算—初步得出结论—举例验证—得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。还可以引导学生研究减法中奇偶性的变化规律

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

[板书设计]

数的奇偶性

例子: 结论:

12 + 34 = 48 偶数+偶数=偶数

11 + 37 =48 奇数+奇数=偶数

12 + 11 =23 奇数+偶数=奇数

因数倍数教案8篇相关文章:

中班语言教案狼来了教案通用8篇

关于电的科学教案教案最新8篇

关于电的科学教案教案模板8篇

中班教案沉与浮教案优质8篇

一年级下册数学教案人教版教案8篇

中班语言教案别说我小教案8篇

幼儿园音乐教案幼儿园音乐教案推荐8篇

幼儿园音乐教案幼儿园音乐教案模板8篇

小学美术教案点的集合美术教案优秀8篇

认识7和8教案模板8篇

因数倍数教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
172396