有理数乘法教案6篇

时间:
couple
分享
下载本文

只有将教案提前制定好,才能避免教学过程中出错,写一篇优秀的教案有利于教师提高自己的教学水平,莘莘范文网小编今天就为您带来了有理数乘法教案6篇,相信一定会对你有所帮助。

有理数乘法教案6篇

有理数乘法教案篇1

教学目标

1、理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2、能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3、三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4、通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5、本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的'方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

a·b=b·a;

(a·b)·c=a·(b·c);

(a+b)·c=a·c+b·c。

(三)教法建议

1、有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2、两数相乘时,确定符号的依据是“同号得正,异号得负”,绝对值相乘也就是小学学过的算术乘法。

3、基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4、几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。

5、小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6、如果因数是带分数,一般要将它化为假分数,以便于约分。

有理数乘法教案篇2

一、知识与能力

掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

二、过程与方法

经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

三、情感、态度、价值观

培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

四、教学重难点

一、重点:熟练进行有理数的乘除运算

二、难点:正确进行有理数的乘除运算

预习导学

通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律

五、教学过程

一、创设情景,谈话导入

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

二、精讲点拨质疑问难

根据预习内容,同学们回答以下问题:

1.有理数的乘法法则:

(1)同号两数相乘___________________________________

(2)异号两数相乘_____________________________________

(3)0与任何自然数相乘,得____

2.有理数的乘法运算律:

(1)乘法交换律:ab=_________

(2)乘法结合律:(ab)c=_______

(3)乘法分配律:(a+b)c=________

3.有理数的除法法则:

除以一个不等于0的数,等于乘这个数的__________

比较有理数的乘法,除法法则,发现_________可能转化为__________

三、课堂活动强化训练

某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?

注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结

四、延伸拓展,巩固内化

例2.(1)若ab=1,则a、b的关系为()

(2)下列说法中正确的个数为()

0除以任何数都得0

②如果=-

1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身

a1个b2个c3个d4个

(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变()

a两数相等b两数互为相反数

c两数互为倒数d两数相等或互为相反数

有理数乘法教案篇3

教学目的:

1、要求学生会进行有理数的加法运算;

2、使学生更多经历有关知识发生、规律发现过程。

教学分析:

重点:对乘法运算法则的运用,对积的'确定。

难点:如何在该知识中注重知识体系的延续。

教学过程:

一、知识导向:

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

二、新课:

1、知识基础:

其一:小学所学过的乘法运算方法;

其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:

(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的东方6米处

拓展:如果规定向东为正,向西为负

情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的西方6米处

发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6

同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6

概括:把一个因数换成它的相反数,所得的积是原来的积的相反数

3、设疑:

如果我们把中的一个因数2换成它的相

反数-2时,所得的积又会有什么变化?

当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

例:计算:

(1)(2)

三、巩固训练:

p52.1、2、3

四、知识小结:

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

五、家庭作业:

p57.1、2,3

六、每日预题:

1、小学多学过哪些乘法的运算律?

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

有理数乘法教案篇4

一、教学目标:

1、学会用计算器进行有理数的除法运算。

2、掌握有理数的混合运算顺序。

3、通过探究、练习,养成良好的学习习惯

二、教学重点和难点

1、学习重点:有理数的混合运算

2、学习难点:运算顺序的确定与性质符号的处理

三、教学过程

(一)、学前准备

1、计算

1)(0.0318)(1.4)

2)2+(8)×2

(二)、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算乘除法,再算加减法。

3、结合问题1,阅读课本p36p37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是先算乘除法,再算加减法。

5、阅读p36,并动手做做

三、新知应用

1、计算

1)、186(2)

2)11+(22)3(11)

3)(0.1)(100)

四。课堂小结:请你回顾本节课所学习的主要内容:

1、有理数的混合运算顺序应该是先算乘除法,再算加减法。

2、计算器的使用。

五、作业

p39第7题(4、5、7、8)、第8题

有理数乘法教案篇5

教材分析

“数的运算”是“数与代数”学习领域的重要内容。有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。因此本节内容具有承前启后的重要作用。

学情分析

1.让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。

2.通过观察、归纳,提高学生的理性认识。

3.培养学生学会表达、学会倾听的良好品质。

教学目标

1.知识技能:

(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。

(2)掌握有理数乘法法则,能解决简单的的实际问题。

2.数学思考:

通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。

3.问题解决:

通过自主探索和合作交流,发展学生逆向思维及化归思想。

4.情感态度价值观:

通过经历探索有理数乘法运算的过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。

教学重点和难点

教学重点是:有理数的乘法法则的理解和运用。

教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。

有理数乘法教案篇6

目标:

1、知识与技能

使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。

2、过程与方法

经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。

重点、难点:

1、重点:有理数乘法法则。

2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

过程:

一、创设情景,导入新

1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?

乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:

(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

3、在一条由西向东的笔直的马路上,取一点o,以向东的路程为正,则向西的路程为负,如果小玫从点o出发,以5千米的向西行走,那么经过3小时,她走了多远?

二、合作交流,解读探究

1、小学学过的乘法的意义是什么?

乘法的分配律:a×(b+c)=a×b+a×c

如果两个数的和为0,那么这两个数互为相反数。

2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)

3、学生活动:计算3×(-5)+3×5,注意运用简便运算

通过计算表明3×(-5)与3×5互为相反数,从而有

3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。

类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。

4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?

鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。

在学生猜测、归纳、交流的过程中及时引导、肯定

两数相乘,同号得正,异号得负,绝对值相乘。

任何数与0相乘,积仍为0

(板书)有理数乘法法则:

三、应用迁移,巩固提高

1、计算

(-5)×(-4)2×(-3.5)×(-0.75)×0

(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。

(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。

2、计算下列各题

①(-4)×5×(-0.25)②×()×(-2)

③×()×0×()

指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。

教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?

学生小结后,教师归纳:

几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

练习:本p31练习

四、总结反思(学生先小结)

1、有理数乘法法则

2、有理数乘法的一般步骤是:

(1)确定积的符号;(2)把绝对值相乘。

五、作业:p39习题1.5a组1、2

有理数乘法教案6篇相关文章:

礼仪排队教案反思6篇

幼儿园手工船教案通用6篇

丢沙包中班教案6篇

幼儿园中班卫生教案6篇

幼儿主题教案推荐6篇

美术花花衣教案6篇

小小班语言教案最新6篇

幼儿园劳动活动教案6篇

幼儿园小班音乐课程教案6篇

安全与健康教案推荐6篇

有理数乘法教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
96769