数学小学3年级上册教案6篇

时间:
Trick
分享
下载本文

认真完成一份教案才能从而提升个人的整体水平,通过教案的制定可以丰富我们的课堂内容,以下是莘莘范文网小编精心为您推荐的数学小学3年级上册教案6篇,供大家参考。

数学小学3年级上册教案6篇

数学小学3年级上册教案篇1

教学内容:

北师大版小学数学三年级上册p58

教学目标:

1、探索并掌握三位数除以一位数时,因不够商1而在商中间或末尾商0的除法的计算方法,能正确地进行计算。

2、培养良好的计算习惯。

教学重点:

商中间或末尾商0的除法的计算方法。

教学难点:

商中间或末尾商0的除法的计算方法。

教材分析:

本节主要内容是学习比较复杂的.三位数除以一位数商中间或者末尾有0的除法。上一节课中的两个题目是被除数的某一位上是0而商0,本节课是因为除到被除数的某一位时不够商1而商0,这部分内容是学习的一个难点。通过6123要让学生明白算理和算式的简便写法。

教学过程:

一、创设情景,尝试探索

1、创设情景:本月轮到你当家庭主管,负责分配零用钱,零用钱一共612元,平均分配给家里3个人,每人该分配几元?

(1)你能完成这项任务吗?请你试试看。

(2)小组讨论,比一比谁完成得好。

(3)汇报,注意表达的条理性和完整性。

2、情况分析

(1)在计算过程中,碰到什么问题?

(2)说一说你是怎样解决每个问题的。

二、引导归纳,提炼方法

1、提问:除到被除数的十位时,不够商1怎么办?接下去的竖式该怎样写?(这是重要环节,让学生充分讨论,充分发言;教师准确引导,方向明确)

2、提炼:用被除数十位的1除以3,不够商1,就在商的十位上写0;3和0相乘得0,在1的下面写0,1减0得1,再把个位的2写下来,12除以3商4。(教师在演示的时候,每一步都要起到示范的作用,促进学生养成好的计算习惯)

3、介绍简便的写法。

三、独立尝试,巩固提高

1、尝试写竖式计算:5224在尝试解题过程中运用已有知识解决问题。(强调在计算过程中的每个步骤和注意事项)

2、归纳总结。

数学小学3年级上册教案篇2

教学内容:

第1~2页,例1及“做一做”,练习一1—7题。

教学目的:

(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

(2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

教学重、难点:

(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

(2)引导学生总结分数乘整数的计算法则。

教学过程:

(一)铺垫孕伏

1、出示复习题。(投影片)

(1)整数乘法的意义是什么?

(2)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?9个11是多少?8个6是多少?

(3)计算:

计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

2、引出课题。

分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

(二)探究新知。

1、教学分数乘整数的意义。

出示例1,指名读题。

(1)分析演示:

师:每人吃块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:+ + = = =(块),(教师将3个双层扇形图片拼成一个一块蛋糕的图片)

(2)观察引导:

这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。

(3)比较和12×5两种算式异同:

提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

通过讨论使学生得出:

相同点:两个算式表示的意义相同。

不同点:是分数乘整数,12×5是整数乘整数。

(4)概括总结:

教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

2、教学分数乘以整数的计算法则。

(1)推导算理:

由分数乘整数的意义导入。

问:表示什么意义?引导学生说出表示求3个的和。板书:+ +学生计算,教师板书:提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

(2)引导观察:

分子部分、分母与算式两个数有什么关系?(互相讨论)

观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。

(3)概括总结:

请根据观察结果总结的计算方法。(互相讨论)

汇报结果:

(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。

根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。

(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

3、反馈练习:

(1)看图写算式:做一做、练习一第1题。

订正时让学生说出乘法中被乘数、乘数各表示什么?

(2)口答列算式:

=()×()

3个是多少?5个是多少?

订正时让学生说一说为什么这样列式。

(3)计算:

先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。

(三)全课小结。

这节课我们学习了什么?引导学生回顾总结。

(四)作业。

练习一5、6题。

数学小学3年级上册教案篇3

一、教材简析:

本单元教学平移、旋转和轴对称的相关内容,例1教学认识图形的平移、在方格纸上将图形平移;例2认识图形的旋转;例3在方格纸上将图形旋转90°;例4认识轴对称图形及其对称轴;例5在方格纸上补全一个简单的轴对称图形。通过学习进一步认识图形的平移及旋转以及认识轴对称图形及其对称轴,发展学生的空间观念,并为第三学段进一步学习有关内容打好基础。

二、学情分析:

学生在三年级已经这是初步认识了生活中的平移和旋转现象以及轴对称图形的初步认识。学生已经知道什么是轴对称图形以及轴对称图形的对称轴,还知道长方形、正方形都是轴对称图形。在三年级(上册)学生初步感知了生活中常见的旋转现象。

三、教学要求:

1.使学生通过观察、操作等活动,认识图形的平移和旋转,能在方格纸上按水平或垂直方向将简单图形平移,会在方格纸上将简单图形旋转90°;进一步认识轴对称及其对称轴,能画出轴对称图形的对称轴,能在方格纸上补全一个简单的轴对称图形。

2.使学生经历从平移、旋转、轴对称的角度欣赏和设计图案的过程,积累一些图形变换的经验,初步感受图形运动的结构美,体验平移、旋转、轴对称的应用价值,发展初步的推理能力和空间观念。

3.使学生在认识平移、旋转和轴对称的过程中,感受与他人合作的乐趣,获得学习成功的愉悦体验,增强对图形变化的兴趣。

四、教学关键:

1.教学图形的平移时,要将着力点放在确定平移的距离上。

2.从学生熟悉的生活实例出发,引导学生通过观察、比较和交流,充分感知图形旋转的基本特征,初步建立图形旋转的概念,为进一步探索在方格纸上把简单的图形旋转90°打下坚实的基础。

五、教学重点:

1.经历发现长方形、正方形对称轴条数的过程,画平面图形的对称轴。

2.将图形按水平或竖直方向平移到指定位置,正确判断平移的距离。

六、教学难点:

认识按顺时针或逆时针方向旋转90°的含义,能在方格纸上把简单图形旋转90°。

七、教学方法与措施:

1.基于已有的知识和经验,合理设置认知起点。

2.紧扣图形运动的最本质特征,引导学生探索画运动后图形的方法。

3.设计丰富多样的活动,引导学生感受数学美。

八、课时安排:

1.平移 1课时

2.旋转 1课时

3.轴对称 1课时

4.练习 1课时

数学小学3年级上册教案篇4

〖教学目标

1. 在分苹果的过程中体会除法竖式的实际含义,掌握除法的竖式书写格式和试商方法,能正确计算有余数的除法。

2.体会学习有余数除法的必要性,能运用有余数除法的知识解决生活中的一些简单实际问题。

3.培养学生在自主探索、合作交流中分析、解决生活中实际问题的能力。

〖教材分析

本节是在学生初步认识除法的含义、掌握表内除法计算(包括竖式计算和试商)的基础上,安排有余数的除法。学习有余数的除法,可以加深学生对除法意义的理解,知道什么是余数及余数一定要比除数小的道理,同时又可以巩固表内除法计算,还为以后进一步学习一位数除多位数的除法打下基础。

教材从学生已知的表内除法引入,通过分苹果活动使学生体会到余数一定要比除数小,并主动探索试商的方法,引导学生把学到的知识运用到实际生活中去,解决日常生活中的问题。通过分苹果的实际操作,抽象出除法竖式的书写过程,使学生体会到除法竖式每一步的实际含义。有余数除法的试商是学生学习的难点,要引导学生经历试商的过程,积累试商的经验,逐步达到熟练。在运用有余数除法解决问题时,要联系生活实际,通过学生自主探索、合作交流,分析、解决生活中的实际问题,使学生体会到在日常生活中有很多平均分后还有余数的情况,认识到学习有余数除法的必要性。

〖学校及学生状况分析

我校是一所市级重点实验校,师资力量强,学生的素质也比较高。部分学生以前就接触过除法竖式,但是对于竖式的含义、书写格式及应用还并不明确。教学时可以根据班级学生情况分成一课时或两课时完成。我根据班级学生的实际情况,将除法竖式和有余数除法的竖式安排在一课时内进行教学。

〖课堂实录

(一)创设情境,激趣导入

师:妈妈昨天买了20个苹果,要把这些苹果放在一些盘子里面,你愿意帮妈妈分一分吗?

(揭示课题:“分苹果”并板书)

师:如果把这些苹果平均放在这些盘子里,你准备怎样分?把你的想法和同桌说一说。

(学生的分法主要有:平均每盘放4个、5个、6个、7个。个别学生说每盘放2个、10个,其他同学都说出了这样分的不合理性。学生还提出如果是每4,5个放一盘就正好分完,如果是每6,7个放一盘就会出现剩余。)

(二)小组合作,自主探究

1. 活动一:每盘放5个苹果,20个可以放几盘

(1)解决问题,抽象出除法竖式的计算过程

①学生独立思考

②小组内交流

③集中交流(说出结果并说一说自己的思考过程。)

生1:通过乘法口诀“四五二十”得出结论,可以放4盘。

生2:5+5+5+5=20,可以放4盘。

生3:20-5-5-5-5=0,可以放4盘。

生4:20÷5=4,可以放4盘。

生5:除法还可以用另一种形式――竖式来计算。

(2)体会除法竖式每一步的`实际含义,正确掌握除法竖式的写法

①理解每一步的实际含义

a学生介绍除法竖式的书写格式。

b尝试理解竖式的每一步含义。

c教师提示

d让学生说出自己的思考过程及有疑问的地方。

(学生小结:20是被除数,表示有20个苹果;5是除数,表示每盘分5个苹果;4是商,表示分4盘。)

②教学写法,学生试写

a学生介绍,师在黑板上边板书写法边讲解。

b学生观察,并说一说需要注意什么。

(注意:先写被除数20,然后写除式;4要与0对齐,然后写积20;最后写0,0也要与20的0对齐。)

c剩何?什么4和0都要与20后面的0对齐?

d学生用竖式计算,进行练习。

2.活动二:每盘放6个苹果,20个可以放几盘

(1)解决问题,抽象出有余数除法竖式计算方法

①请学生用20个圆片摆一摆,并列出算式。列式:20÷6=3(盘)……2(个)

(这是学生上学期学习过的内容,学生应该能很快完成。)

②学生先试着自己写竖式,然后在小组内交流,并说明竖式中各部分的含义。

③班内交流。

(展示不同学生的竖式并让学生说明竖式中各部分的含义,同时其他学生可以质疑。)

(学生小结:20表示有20个苹果需要去分,6表示每盘放6个苹果,3表示可以放3盘,3盘6个个苹果是18个苹果,还有2个苹果不能继续再分了,还余2。)

(2)体会余数一定要比除数小

(因为有前面的摆一摆的活动,大多数学生没有出现余数大于除数现象,但是,恰好有几名学生没带学具,在计算的时候,一个学生出现了余数比除数大的情况。)

师:观察这位同学的计算过程及结果,你发现了什么?

(如果学生有困难,提示学生观察每道题目的余数和除数。)

生1:20÷6应该商3,而不是商2。

生2:如果余数比除数大,那就能够继续再分。

生3:余数8里还包括一个6,还可以再放一盘,还剩2个。

师:比较每道题里余数和除数的大小,你发现了什么?请同学们思考,在有余数的除法竖式的计算过程中,我们应该注意什么呢?

生:余数一定比除数小,不然就没有除完。

(3)试一试

20÷7=?用竖式计算,让学生在练习本上练习写。

(三)巩固练习,拓展运用

1. “试一试”

(让学生独立完成后在班内交流。)

2.学生用竖式计算

(“练一练”的第1题完成后同桌两人互相检查,并选一道喜欢的题目互相说一说是怎样算的?)

?教学反思

在教学中组织数学活动,目的是在解决实际问题中,使学生体验除法竖式抽象的过程;通过动手操作,使学生发现生活中有很多经过平均分后还有剩余的现象,体会学习有余数除法的必要性,了解有余数除法竖式每步的含义;通过自主探索,发现余数和除数之间的关系,进一步理解余数的含义。

1. 引导学生体验抽象除法竖式的过程

学生在学习表内乘除法时,利用乘法口诀已经能够在算式上直接写出得数。教材安排了“20个苹果可以放几盘”的“分苹果”活动,列举了四种解决这一问题的方法。在此基础上,我创造性地改编了教材,引导学生按照自己的想法来分这些苹果,结果自然出现了整除和有余数除法这两种情况,进而再由对除法竖式有一定了解的学生介绍竖式计算,并且把竖式中的每一步所表示的含义和分苹果的活动紧密联系起来。

2.在操作活动中抽象出有余数的除法

在第一次“每盘放5个”的分苹果活动的基础上,我组织了第二次活动“每盘放6个”,通过学生自己的操作活动,感知、体会有余数除法,发现可以放3盘,还余下2个,而这2个不能再继续往下分,不然每盘就放得不一样多了;体会到在日常生活中会遇到把一些物品平均分后有余数的情况,认识有余数除法。

3.在探究中理解余数要比除数小,不断发现有余数除法的试商方法

学生通过实际操作、观察比较,对余数和除数的关系有了明确的认识,这个“余数为什么要比除数小”的探索过程,其实也是培养质疑、批判和创新精神,学会学习、积累数学活动经验的有意义的学习过程。在练习中,教材还安排了分数目比较大的物品,引导学生经历试商的过程,积累试商的经验。

教学中也出现了一些问题。

把能够整除和有余数除法的竖式计算的内容都在一课时内教学稍显紧张,有一部分学生接受起来存在一定困难,特别是我校正在尝试小课时教学的研究活动,所以我认为这一课的教学分成两课时更为妥当。

〖案例点评

转变学生的学习方式,提倡自主探索与合作交流是课程改革的一个重要理念。在这节课中,教师能本着这样的理念进行教学,把一节传统的除法课上得生动、活泼。这节课中有几点设想很有价值,主要体现在以下几方面。

1. 够引导学生在解决问题中理解和掌握有余数除法的计算方法

教师能够注意把计算教学和解决问题教学紧密结合起来,无论是认识有余数除法还是学习有余数除法的计算都注意从实际问题引入,让学生结合具体实例体会有余数除法的意义,理解并掌握有余数除法的计算方法。

2.能够引导学生在体验中获取知识

(1)帮助学生在现实活动中建立“剩下”的表象,为形成“余数”的概念打下基??

平均分东西,有时正好全部分完,有时会剩下一些不能够再平均分。“按照自己的想法来分苹果”是一个很开放的活动,对每盘分得的数量以及分的盘数都没有做规定,完全由学生自主选择。因此操作的结果,既出现了刚好分完的情况,也出现了有剩余的情况,体现教学设计的巧妙之处。

(2)引导学生研究有余数除法的求商方法

计算有余数除法关键的一步是求商。教材没有把求商的方法直接告诉学生,通过“每盘分6个,需要几个盘子”这样的实际问题,激活学生已有经验――用分实物(分学具)的方法求答案,把动手操作和抽象思考联系起来,为学生提供探索、交流的机会。(3)引导学生比较除法算式中的除数和余数,发现并理解规律

要求学生“比较每道题里余数和除数的大小”,一方面引导学生联想平均分东西,最后剩下的都不够再分的表象;另一方面,引导学生观察几道除法算式,发现相同的现象,从而理解所发现的规律,归纳出“余数比除数小”的结论。

像“有余数除法的竖式计算”这样的教学内容实际上是比较传统也比较死板的,但是如果我们能够结合学生的实际情况,采用全新的教学方式,当然就能够收到较好的教学效果。

数学小学3年级上册教案篇5

教学目标

1.通过比较,学生正确理解面积和周长的意义,能运用概念正确地计算面积和周长.

2.提高学生综合、概括的能力.

3.培养学生良好的学习习惯.

教学重点

区别面积和周长的意义、计量单位和计算方法.

教学难点

正确地进行长方形、正方形周长和面积的计算.

教学过程

一、复习准备.

师:我们已学习过了长方形、正方形的周长和面积的计算,下面我们一起来复习一下.

1.怎样计算长方形、正方形的周长?

长方形的周长=(长+宽)×2

正方形的周长=边长×4

2.怎样计算长方形、正方形的面积?

长方形的面积=长×宽

正方形的面积=边长×边长

那么,周长和面积有什么不同吗?今天我们一起来探讨这个问题.(板书课题:面积和周长的比较)

二、学习新课.

出示图形,这是一个长方形,长4厘米,宽3厘米.请同学提出问题,可以求什么?(周长、面积各是多少?)

师:请同学在自己作业本上,分别求出这个长方形的周长和面积.(订正时,老师板书)

通过计算你能发现周长与面积有什么不同吗?请根据下面几个问题进行思考.

投影出示思考题:

1.周长和面积各指的是什么?

2.周长和面积的计算方法各是什么?

3.周长和面积各用什么计量单位?

在个人思考的基础上,再进行小组讨论.

集体讨论归纳:

1.长方形周长是指长方形四条边的长度和,而它的面积是指四条边围成的面的大小.

2.长方形的周长=(长+宽)×2

长方形的面积=长×宽

3.求周长计算出的结果要用长度单位,求面积计算出的结果要用面积单位.

师:同学们讲得很好,那么我们能不能简单地概括出面积和周长究竟有哪几点不同呢?

(在老师的引导下,共同归纳、概括)板书:

面积和周长的区别:

1.概念不同;

2.计算方法不同;

3.计量单位不同.

师:现在老师有一个问题,要向同学们请教,愿意帮忙吗?

如果计算正方形的周长和面积,是不是也存在这3点不同呢?(正方形的周长和面积也具备这3点不同)

师:老师还有一个问题,假如一个正方形它的边长是4,会求它的周长和面积吗?

(学生叙述列式过程,老师写在黑板上)

师:这两个算式都是“4×4”,这不是完全相同吗?你们怎么能说它们不同呢?

(讨论一下,然后再回答)

待学生充分发表意见后,老师再归纳.

师:周长的4×4是4个边长,式子中的第一个4是4厘米.面积的4×4是4个4平方厘米,所以两个算式虽然都是4×4,但表示的意义不同,说明面积和周长是两个不同的概念,因此做题时要特别注意区分,要认真审题.

三、巩固反馈

1.请你用手指出桌面的周长,摸一摸桌面的面积.

2.出示正方形手帕,请同学指出它的周长和面积.

3.计算下面每个图形的周长和面积.

投影出示:

4.选择正确答案的字母填在( )里.

(1)一个正方形花坛,边长20米.如果在花坛的四周围上栏杆,栏杆长多少?( )

(2)一个正方形花坛,边长20米.如果李欣每天早晨围着花坛跑5圈,他每天早晨要跑多少米?( )

(3)一个正方形花坛,边长20米.如果在这个花坛里种草坪,这个草坪的面积是多少?( )

a.20×20=400(米) b. 20×4=80(米)

c.20×20=400(平方米) d.20×4×5=400(米)

师生共同总结:通过这节课的学习,我们认识到面积和周长有三点不同:1.概念不同;2.计算方法不同;3.计量单位不同。

数学小学3年级上册教案篇6

教学目标:

1. 了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2 尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。

3 在解决问题的过程中培养学生的逻辑思维能力。

教学重点:感受古代数学问题的趣味性。

教学难点:用不同的方法解决问题。

教学准备:课件

教学程序:

一 激趣导入

师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的 “鸡兔同笼”问题。

师:关于“鸡兔同笼”问题以前你们有过一些了解吗?流传至今有一千五百多年的问题,是什么样呢?想知道吗?

二 探索新知

1(课件示:书中112页情境图)

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)

师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。问鸡和兔各有几只?

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2.出示例一(课件示例一)

题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只?

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

师:把你们研究的结果拿来让大家看看。这样按顺序推算,对于数据小的问题解决起来很方便,不过一旦数据比较大,比如笼子里的鸡和兔有100只,200只,甚至更多,再用这样的办法怎么样?

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)

师:我们看这个方程列得是否正确?4x表示什么?2(8-x)表示的是什么?兔脚数+鸡脚数=什么?这就是列这个方程所依据的数量关系。谁能把这个数量关系完整的说一遍?

生:说数量关系。(鸡脚数+兔脚数=26只脚)

师:根据这个数量关系你能想到另两个数量关系吗?

生:叙述另外两个数量关系。(26只脚-鸡脚数=兔脚数

26只脚-兔脚数=鸡脚数)

根据这两个数量关系你又能列出哪两个方程呢?

生:汇报师板书两方程。

师:除了可以设兔有x只,还可以怎样设?

生:还可以设鸡有x只。那兔就有(8-x)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2x+4(8-x)=26

根据26只脚-鸡脚数=兔脚数能列出26-2x=4(8-x)

根据26只脚-兔脚数=鸡脚数能列出26-4(8-x)=2x

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。

我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)

生:我们是这样想的。假设笼子里都是鸡,应有脚8×2= 16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只

鸡就有8-5=3只。(生说师板书计算过程)

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

师解释:刚才我们把笼子里的动物都看做鸡(课件图画上显示)那么笼子里共就应该有多少只脚?

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子, 3只鸡了。

师:把笼子里的动物都看做鸡,你们会算了,要是把笼子里的动物都看做兔,(师板书:全看作兔)又该怎样思考呢?你能参照前面的方法自己试着做一做吗?

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

师:同学们看,通过上面的探究学习,我们共找到几种解决鸡兔同笼问题的方法?(三种)哪三种?(列表法,方程法,假设法)你们能说说这三种方法各有什么特点吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

三 巩固练习

师:现在就请你来解决那道数据较大的问题你们能解决吗?

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

师:在一千五百年前,我国的古人就发明出这么的数学问题,一直流传到现在,他们还想出那么巧妙地解决办法,为我们后人留下了宝贵的知识财富,你想对他们说点什么吗?

四 全课总结

师:通过这节课的学习你有什么收获?

生:我学会用……方法解决“鸡兔同笼”问题。

……

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

鸡 兔 同 笼

列表法

方程法 假设法

解:设有兔x只,鸡就有2(8-x)只。 全看作鸡

4x+2(8-x)=26 8×2=16(只)

2x+16=26 26-16=10(只)

x=5 4-2=2(只)

8-5=3(只) 10÷2=5(只)

答:有5只兔,3只鸡。 8-5=3(只)

26-4x=2(8-x) 全看作兔

26-2(8-x)=4x 8×4=32(只)

2x+4(8-x)=26 32-26=6(只)

26-2x=4(8-x) 4-2=2(只)

26-4(8-x)=2x 6÷2=3(只)

8-3=5(只)

数学小学3年级上册教案6篇相关文章:

数学s版三年级上册教案7篇

一年级数学上册8和9教案优秀7篇

数学s版三年级上册教案最新5篇

人教版小学二年级上册音乐教案5篇

数学二年级上册教案6篇

北师大版三年级上册数学教案7篇

三年级数学上册教案优质8篇

2年级上册数学教案8篇

小学3年级科学教案5篇

苏教版数学一年级上册教案7篇

数学小学3年级上册教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
103889